Written By Dave Neary

PART I

In this article, I present GIMP plug-ins basics and introduce the libgimp API. I will also show how
to use the PDB to make our plug-in available to other script authors.

Introduction

New developers are often intimidated by The GIMP size and its reputation. They think that writing
a plug-in would be a difficult task. The goal of these articles is to dumb this feeling down, by
showing how easily one can make a C plug-in.

In this part, I present a plug-in's basic elements. We will see how to install a plug-in and how to get
data from an image and directly manipulate it.

Architecture

o

The GIMP

FOE -

Applicatian
cong

The GIMP script interface is centered on the Procedural database (PDB). At startup, The GIMP
looks into a predefined set of places for scripts and plug-ins, and asks each new script to identify
itself.

The plug-in declares itself to the PDB at that time, and passes informations like the position it
wishes to get in the menu hierarchy, input parameters, and output parameters.

When a script or a plug-in wants to use our plug-in, it gets through the PDB, which manages
communicating parameters in one direction and the other in a transparent way.

Internal functions that wish to get exposed to plug-ins have to be packaged first in the core, that will
register them in the PDB, and secondly in the libgimp that will allow the function to be called as a
normal one.

This was the introduction - now, we will look closer at our first plug-in, a "Hello, world!".

Compiling the plug-in
To be able to compile simple plug-ins for The GIMP, one needs libgimp headers, as well as an

associated utility named gimptool.

With that utility, one can install a plug-in either in a private directory (~/.gimp-2.0/plug-ins), or in
the global plug-in directory.

Syntax is

mailto:bolsh@NOSPAM.gimp.org
http://developer.gimp.org/writing-a-plug-in/1/architecture.png

gimptool-2.0 --install plugin.c or gimptool --install-admin plugin.c

This utility, with other options, can also be used to install scripts, or uninstall plug-ins.

Behaviour

A GIMP plug-in can typically behave three different ways. It can take image data, modify it, and
send back the modified image, like edge detection. It can generate an image and send it back, like
some script-fus, or file reading plug-ins like jpeg. Or it can get an image, and process it without
modifying its data, like a file saver plug-in.

Essentials

#include <libgimp/gimp.h>

This header makes all basic plug-in elements available to us.

GimpPlugInInfo PLUG IN INFO = {
init,
quit,
query,
run

}

This structure has to have that name. It contains four pointers to functions, which will be called at
set times of the plug-in life. init and quit are optional, and thus can hold NULL values, but the last
two functions, query and run, are mandatory.

The init() function is called each time The GIMP starts up. This function is not typically used. Some
plug-ins use it to make a secondary search that is not done by the core. This function is not used by
any standard GIMP plug-in, but could be useful for example for a plug-in that would like to register
some procedure conditionally on some files presence.

The quit() function is not used much either. It is called when The GIMP is about to be closed, to
allow it to free some resources. It is used in the script-fu plug-in.

The query() function is called the first time the plug-in is present, and then each time the plug-in
changes.

The run() function is the plug-in's centrepiece. It is called when the plug-in is asked to run. It gets
the plug-in name (as a plug-in can register several procedures), input parameters, and a pointer to
output parameters, then determines if it is launched in a interactive way or by a script, and does all
the plug-in processing. Its prototype is

void run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn vals,

GimpParam **return vals);

MAIN ()

MAIN is a C macro that holds a bit of dark magic to initialise arguments. It also calls the
appropriate PLUG_IN_INFO function depending on the timing. Your plug-in needs it.

The query() function

query() deals with the procedure registration and input arguments definition. These informations are
saved to speed up startup time, and refreshed only when the plug-in is modified.

For our "Hello, world!" plug-in, the query function will look like this:

static void
query (void)

{
static GimpParamDef args[] = {
{
GIMP_PDB INT32,
"run-mode",
"Run mode"
I
{
GIMP_PDB_IMAGE,
"image",
"Input image"
b
{
GIMP_PDB DRAWABLE,
"drawable",
"Input drawable"
}
b

gimp _install procedure (
"plug-in-hello”,
"Hello, world!'",
"Displays \"Hello, world!\" in a dialog",
"David Neary",
"Copyright David Neary",

"2004",
" Hello world...",
"RGB*, GRAY*",

GIMP_PLUGIN,
G N ELEMENTS (args), 0,
args, NULL);

gimp plugin menu register ("plug-in-hello",
"/Filters/Misc");

GimpParamDef contains three things - the parameter type, its name, and a string describing the

parameter.

gimp_install_procedure declares the procedure name, some description and help strings, menu path
where the plug-in should sit, image types handled by the plug-in, and at the end, input and output
parameters number, as well as the parameters descriptors.

"RGB*, GRAY*" declares the image types handled. It can be RGB, INDEXED or GRAY, with or
without Alpha. So "RGB*, GRAY*" describes RGB, RGBA, GRAY or GRAY image type.

GIMP_PLUGIN declares this procedure to be external, and not to be executed in The GIMP core.

By adding a stub run function now, we can check that our plug-in has all the essential elements, and
test that it registers itself in the PDB with the "Xtns->Plug-in Details" plug-in.

Ele Edi ESelect iew |mnge Laver Took Dologs IEECEE Fyibor-Fu Sor
L= 200

) TN o ad WO R
L3l 1
= B Aesat ol Fikers
Blur
Lolors
bk
Edge:Defect
Enhancs

pa v | 100 | = Background 1488 KB}

g]
[s t|eelod,

The other required function for PLUG_IN_INFO is run. The core of the plug-in stands there.

Output values (return_vals in the prototype) must have at least one value associated - the plug-in
status. Typically, this parameter will hold "GIMP_PDB_SUCCESS".

Run-modes
One can run a plug-in in several different ways, it can be run from a GIMP menu if The GIMP is

run interactively, or from a script or a batch, or from the "Filters->Repeat Last" shortcut.

The "run_mode" input parameter can hold one of these values: "GIMP_RUN_INTERACTIVE",
"GIMP_RUN_NONINTERACTIVE" or "GIMP_RUN_WITH_LAST_VALS".

"GIMP_RUN_INTERACTIVE" is typically the only case where one creates an options dialog.
Otherwise, one directly calls the processing with values from input parameters or from memory.

http://developer.gimp.org/writing-a-plug-in/1/plug-in-details.png
http://developer.gimp.org/writing-a-plug-in/1/plug-in-menu.png

For our test plug-in, we will simply display a dialog containing a "Hello, world!" message.
Thankfully, this is really easy with GTK+. Our run function could be:

static void

run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn vals,
GimpParam **return vals)
{

static GimpParam values[1];
GimpPDBStatusType status = GIMP PDB SUCCESS;
GimpRunMode run_mode;

/* Setting mandatory output values */
*nreturn _vals = 1;
*return _vals = values;

values[0].type = GIMP_PDB_ STATUS;
values[0].data.d status = status;

/* Getting run _mode - we won't display a dialog if
* we are in NONINTERACTIVE mode */
run_mode = param[0].data.d int32;

if (run_mode != GIMP RUN NONINTERACTIVE)
g message("Hello, world!\n");

Now, when we run our plug-in, there is action:

GIMP Mesza:

Hello world Message
Hello, world!

PART II

In the first part, I presented essential elements to build a plug-in interface with The GIMP. Now we
will produce a simple but useful algorithm that we could use in our plug-in.

Introduction

The algorithm we are going to implement is a simple blur. It is included in The GIMP as "Filters-
>Blur->Blur" with default parameters.

That algorithm is very simple. Each pixel in our image is replaced by a mean value of its
neighbours. For example, if we look at the simplest case where the neighbourhood is 3x3 (see figure
1), in that case the center value will be replaced with 5, the mean of the 9 numbers in its
neighbourhood.

With this method, edge differences are splatted, giving a blurred result. One can choose another
radius, using a (2r + 1) x (2r + 1) matrix.

Image structure

Last month, we wrote a run() function that did nothing useful. Let's look again at run() prototype:

static void run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn _vals,
GimpParam **return _vals);

We saw that for a filter (i.e. a plug-in that modifies the image), the first three input parameters were
the run mode, an identifier for the image, and another one for the active drawable (layer or mask).

A GIMP image is a structure that contains, among others, guides, layers, layer masks, and any data
associated to the image. The word "drawable" is often used in GIMP internal structures. A
"drawable" is an object where you can get, and sometimes modify, raw data. So : layers, layer
masks, selections are all "drawables".

Gimplmage

GimpLayer

GimpLayer

Accessing the data

To get a GimpDrawable from its identifier, we need the gimp_drawable_get() function:

GimpDrawable *gimp drawable get (gint32 drawable id);

http://developer.gimp.org/writing-a-plug-in/1/index.html
http://developer.gimp.org/writing-a-plug-in/2/GimpImage.png

From this structure, one can access drawable data through a GimpPixelRgn structure, and one can
check the drawable type (RGB, gray level). The full listing of functions available for a
GimpDrawable can be found in the API.

Two very important functions for plug-ins are gimp_drawable_mask_bounds() and
gimp_pixel_rgn_init(). The first gives the active selection limits on the drawable, and the second
initialises the GimpPixelRgn we will use to access the data.

As soon as we have a well initialised GimpPixelRgn, we can access the image data in several
different ways, by pixel, by rectangle, by row or by column. The best method will depend on the
algorithm one plans to use. Moreover, The GIMP uses a tile-based architecture, and loading or
unloading data is expensive, so we should not use it more than necessary.

The main functions to get and set image data are:

void gimp pixel rgn get pixel (GimpPixelRgn *pr,

guchar *puf,
gint X,
gint y);
void gimp pixel rgn get row (GimpPixelRgn *pr,
guchar *puf,
gint X,
gint Y,
gint width);
void gimp pixel rgn get col (GimpPixelRgn *pr,
guchar *puf,
gint X,
gint Y,
gint height);
void gimp pixel rgn get rect (GimpPixelRgn *pr,
guchar *puf,
gint X,
gint Y,
gint width,
gint height);

void gimp pixel rgn set pixel (GimpPixelRgn *pr,
const guchar *buf,
gint X,
gint y);

void gimp pixel rgn set row (GimpPixelRgn *pr,
const guchar *buf,

gint X,
gint Y,
gint width);

void gimp pixel rgn set col (GimpPixelRgn *pr,
const guchar *buf,
gint X,

http://developer.gimp.org/api/2.0/libgimp/libgimp-gimpdrawable.html
http://developer.gimp.org/writing-a-plug-in/2/tiles.png

gint Y,

gint height);
void gimp pixel rgn set rect (GimpPixelRgn *pr,

const guchar *buf,

gint X,

gint Y,

gint width,
gint height);

There is also another way to access image data (it's even used more often), that allows to manage
data at the tile level. We will look at it in detail later.
Updating the image

At last, a plug-in that has modified a drawable data must flush it to send data to the core, and to tell
the application that the display must be updated. This is done with the following function:

gimp displays flush ();
gimp drawable detach (drawable);

Implementing blur()

To be able to try out several different processing methods, we will delegate the job to a blur()
function. Our run() is below.

static void

run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn vals,
GimpParam **return vals)
{

static GimpParam values[1l];
GimpPDBStatusType status = GIMP PDB SUCCESS;
GimpRunMode run_mode;
GimpDrawable *drawable;

/* Setting mandatory output values */
*nreturn vals
*return vals

’

values;

values[0].type = GIMP _PDB_STATUS;
values[0].data.d status = status;

/* Getting run _mode - we won't display a dialog if
* we are in NONINTERACTIVE mode */
run_mode = param[0].data.d int32;

/* Get the specified drawable */
drawable = gimp drawable get (param[2].data.d drawable);

gimp progress init ("My Blur...");

/* Let's time blur
*

* GTimer timer = g timer new time ();
*/

blur (drawable);

/* g print ("blur() took %g seconds.\n", g timer elapsed (timer));
* g timer destroy (timer);
*/

gimp displays flush ();
gimp drawable detach (drawable);
}

There are a few lines here that need to be explained a bit more. The call to gimp_progress_init()
initialises a progress measurement for our plug-in. Later, if we call gimp_progress_update(double
percent), the percentage given as an input parameter will be shown graphically. The run_mode tells
us whether the plug-in was launched in a way such as we can display a graphical interface or not.
Possible values are GIMP_RUN_INTERACTIVE, GIMP_RUN_NONINTERACTIVE or
GIMP_RUN_WITH_LAST_VALS, which mean the plug-in was executed from The GIMP, from a
script, or from the "Repeat last filter" menu entry.

Regarding the blur algorithm itself, the first version using gimp_pixel_rgn_(getlset)_pixel() is found
below. Some functions in it have not been explained yet.

gimp_drawable_mask_bounds() allows calculation of the filter's effect limits, excluding any region
that is not in the active selection. Limiting the processing this way allows an important performance
improvement.

gimp_pixel_rgn_init() takes as input parameters the drawable, its limits for the processing, and two
booleans that significantly modify the behaviour of the resulting GimpPixelRgn. The first one tells
that "set" operations must be done on shadow tiles, in order to leave original data as is until
gimp_drawable_merge_shadow() is called, when all modified data will be merged. The second one
tells that modified tiles should be tagged "dirty" and sent to the core to be merged. Most of the time,
to read data, one uses FALSE and FALSE for these two parameters, and to write data, one uses
TRUE and TRUE. Other combinations are possible but seldom used.

static void
blur (GimpDrawable *drawable)

{
gint i, j, k, channels;
gint x1l, yl, x2, y2;
GimpPixelRgn rgn in, rgn out;
guchar output[4];

/* Gets upper left and lower right coordinates,
* and layers number in the image */
gimp drawable mask bounds (drawable->drawable id,
&1, &yl,
&x2, &y2);
channels = gimp drawable bpp (drawable->drawable id);

/* Initialises two PixelRgns, one to read original data,
* and the other to write output data. That second one will
* be merged at the end by the call to
* gimp drawable merge shadow() */

gimp pixel rgn init (&rgn_in,
drawable,
x1, vyl,
x2 - x1, y2 - yl,
FALSE, FALSE);
gimp pixel rgn init (&rgn_out,
drawable,
x1, vyl,
x2 - x1, y2 - yl,
TRUE, TRUE);

for (i = x1; i < x2; i++)
{
for (j =vyl; j <y2; j++)
{
guchar pixel[9]1[4];

/* Get nine pixels */
gimp pixel rgn get pixel (&rgn _in,
pixel[0O],
MAX (1 - 1, x1
MAX (j - 1, yl)
gimp pixel rgn get pixel (&rgn in,
pixel[1l],
MAX (i - 1, x1),
i);
gimp pixel rgn get pixel (&rgn in,
pixel[2],
MAX (i - 1, x1),
MIN (j + 1, y2 - 1));

~
~ ~
~=

gimp pixel rgn get pixel (&rgn_in,
pixel[3],
ir
MAX (§ - 1, y1));
gimp pixel rgn get pixel (&rgn_in,
pixel[4],
ir
j);
gimp pixel rgn get pixel (&rgn in,
pixel[5],
ir
MIN (j + 1, y2 - 1));

gimp pixel rgn get pixel (&rgn_in,
pixel[6],
MIN (i + 1, x2 - 1),
MAX (3 - 1, y1));
gimp pixel rgn get pixel (&rgn_in,
pixell[7],
MIN (i + 1, x2 - 1),
i);
gimp pixel rgn get pixel (&rgn_in,
pixel[8],
MIN (i + 1, x2 - 1),
MIN (j + 1, y2 - 1));

/* For each layer, compute the average of the
* nine */

for (k = 0; k < channels; k++)
{

int tmp, sum = 0;

for (tmp = 0; tmp < 9; tmp++)
sum += pixel[tmp][k];
output[k] = sum / 9;

gimp pixel rgn set pixel (&rgn out,
output,
i, 3);
}

if (i % 10 == 0)
gimp progress update ((gdouble) (i - x1) / (gdouble) (x2 - x1));
}

/* Update the modified region */
gimp_drawable flush (drawable);
gimp drawable merge shadow (drawable->drawable id, TRUE);
gimp drawable update (drawable->drawable id,
x1l, vyl,
x2 - x1, y2 - yl);

Row processing

Our function has a bug drawback: performance. On a 300x300 selection, with the timing code
uncommented, blur() took 12 minutes on my K6-2 350MHz, well loaded with other stuff. To
compare, on the same selection, Gaussian blur took 3 seconds.

If we modify our function to rather use gimp_pixel_rgn_(getlset)_row() the result is far better. We
reduce the timing for the 300x300 selection from 760 seconds to 6 seconds. blur() V2 is below:

static void
blur (GimpDrawable *drawable)

{
gint i, j, k, channels;
gint x1l, yl, x2, y2;
GimpPixelRgn rgn in, rgn out;
guchar *rowl, *row2, *row3;
guchar *outrow;

gimp drawable mask bounds (drawable->drawable id,
&1, &yl,
&2, &y2);

channels = gimp drawable bpp (drawable->drawable id);

gimp pixel rgn init (&rgn_in,
drawable,
x1, vyl,
x2 - x1, y2 - yl,
FALSE, FALSE);
gimp pixel rgn init (&rgn out,
drawable,
x1l, vyl,
x2 - x1, y2 - yl,
TRUE, TRUE);

/* Initialise enough memory for rowl, row2, row3, outrow */
rowl = g new (guchar, channels * (x2 - x1));
row2 g new (guchar, channels * (x2 - x1));

yl));

row3 = g new (guchar, channels * (x2 - x1));
outrow = g new (guchar, channels * (x2 - x1));

for (i = yl; i < y2; i++)
{
/* Get row i-1, i, i+l */
gimp pixel rgn get row (&rgn in,

rowl,
x1, MAX (y1, i - 1),
x2 - x1);
gimp pixel rgn get row (&rgn in,
row2,
x1, i,
x2 - x1);
gimp pixel rgn get row (&rgn in,
row3,
x1, MIN (y2 - 1, i + 1),
x2 - x1);
for (j = x1; j < x2; j++)
{
/* For each layer, compute the average of the nine
* pixels */
for (k = 0; k < channels; k++)
{
int sum = 0;
sum = rowl[channels * MAX ((j - 1 - x1), 0) + k]
rowl[channels * (j - x1) + k]
rowl[channels * MIN ((j + 1 - x1), x2 - x1 - 1) + K]
row2[channels * MAX ((j - 1 - x1), 0) + k]
row2[channels * (j - x1) + k]
row2[channels * MIN ((j + 1 - x1), x2 - x1 - 1) + K]
row3[channels * MAX ((j - 1 - x1), 0) + k]
row3[channels * (j - x1) + k]
row3[channels * MIN ((j + 1 - x1), x2 - x1 - 1) + k];
outrow[channels * (j - x1) + k] = sum / 9;
}
}
gimp pixel rgn set row (&rgn_out,
outrow,
x1, i,
x2 - x1);
if (1 % 10 == 0)
gimp progress update ((gdouble) (i - yl) / (gdouble) (y2 -
}
g free (rowl);
g free (row2);
g free (row3);
g free (outrow);

gimp drawable flush (drawable);
gimp drawable merge shadow (drawable->drawable id, TRUE);
gimp drawable update (drawable->drawable id,

x1, vyl,

x2 - x1, y2 - yl);

++ + + + +++

PART III

In the second part, I told you about manipulating image data by pixel or row. This time, I will go
farther and process data by tile, which will improve our plug-in performance. I will also update our
algorithm to take larger radius into account, and build a graphical interface to allow changing that
parameter.

Introduction

Let's have a look at our simple algorithm: for each pixel, generate a (2r+1)x(2r+1) neighbourhood
and for each layer, replace the layer's pixel value with the average value in the neighbourhood.

It's a bit more complex than that - we have to be careful near image borders for example, but this
algorithm makes a blur effect that is not so bad in general.

But until now, we wrote the algorithm for a 3x3 neighbourhood. Time has come to generalise this
part and to introduce the radius as a parameter.

First, a word on tiles.

Tile management

A tile is an image data block with a 64x64 size. Usually, tiles are sent to the plug-in on demand one
by one, by shared memory. Of course this process needs huge resources and should be avoided.

Usually, one doesn't need any particular cache, each tile is sent when one needs it and freed when
one asks for another one. Nevertheless, we can tell our plug-in to keep a tile cache to avoid this
constant round trip, by calling the function:

gimp tile cache ntiles (gulong ntiles);

In the second part example, we called gimp_pixel_rgn_get_row() and gimp_pixel_rgn_set_row() but
without using any cache.

The number of tiles in a tile row will be the layer width divided by the tile width, plus one. So, for a
layer width of 65, we will cache two tiles. As we usually also process shadow tiles, we can double
that number to compute the ideal cache size for our plug-in.

gimp tile cache ntiles (2 * (drawable->width /
gimp_tile width () + 1));

With the cache, our slow plug-in becomes fast. On a 300x300 selection, our last blur took 3
seconds, but on a 2000x1500 selection it was much slower - 142 seconds.

Adding the above line of code, things are getting better: 11 seconds. We still lose transition time
when we reach tile borders, we can go down to 10 seconds when multiplying by 4 instead of 2
(meaning we cache two tiles rows), but the more tiles we cache, the more hard disk access we make,
which reduce the time gain at a point.

http://developer.gimp.org/writing-a-plug-in/2/index.html

Algorithm generalisation

We can modify the algorithm to take a parameter into account: radius. With a radius of 3, the
neighbourhood of a pixel will be 7x7, instead of 3x3 with a radius of 1. To achieve this I modify the
previous algorithm:

® allocate space for 2r+1 tile rows
@ initialise this rows array, taking care of borders
® for each tile row
o for each pixel in the tile row
o compute the neighbourhood average, taking care of borders
o get a new tile row and cycle rows

This algorithm is more complex than the last one, because the average computing will be a O(12)
algorithm.

The modified code to get this behaviour is below. Most of the work is done in the process_row
function. init_mem and shuffle are there to keep the blur code clean and small.

static void blur (GimpDrawable *drawable);
static void init mem (guchar ***row,
guchar **outrow,
gint num_bytes);
static void process row (guchar **row,
guchar *outrow,
gint x1,
gint yl,
gint width,
gint height,
gint channels,
gint i);
static void shuffle (GimpPixelRgn *rgn in,
guchar **row,
gint x1,
gint yl,
gint width,
gint height,
gint ypos);

/* The radius is still a constant, we'll change that when the
* graphical interface will be built. */
static gint radius = 3;

static void
blur (GimpDrawable *drawable)

{
gint i, ii, channels;
gint x1, yl, x2, y2;
GimpPixelRgn rgn _in, rgn_out;
guchar **row;
guchar *outrow;
gint width, height;

gimp progress init ("My Blur...");

/* Gets upper left and lower right coordinates,
* and layers number in the image */

gimp_drawable mask bounds (drawable->drawable id,
&x1, &yl,
&2, &y2);
width
height

x2 - x1;
y2 - yl;

channels = gimp drawable bpp (drawable->drawable id);

/* Allocate a big enough tile cache */
gimp_tile cache ntiles (2 * (drawable->width /
gimp_tile width () + 1));

/* Initialises two PixelRgns, one to read original data,
* and the other to write output data. That second one will
* be merged at the end by the call to
* gimp _drawable merge shadow() */

gimp pixel rgn init (&rgn_in,

drawable,

x1l, vyl,

width, height,

FALSE, FALSE);
gimp pixel rgn init (&rgn out,

drawable,

x1, y1,

width, height,

TRUE, TRUE);

/* Allocate memory for input and output tile rows */
init mem (&row, &outrow, width * channels);

for (ii = -radius; ii <= radius; ii++)
{
gimp pixel rgn get row (&rgn in,
row[radius + ii],
x1l, yl1 + CLAMP (ii, 0, height - 1),
width);
}

for (i = 0; i < height; i++)
{
/* To be done for each tile row */
process row (row,

outrow,

x1l, yl1,

width, height,

channels,

i);

gimp pixel rgn set row (&rgn_out,

outrow,
x1l, i + yl,
width);

/* shift tile rows to insert the new one at the end */
shuffle (&rgn in,
row,
x1, vyl,
width, height,
i);
if (1 % 10 == 0)
gimp progress update ((gdouble) i / (gdouble) height);

/* We could also put that in a separate function but it's

* rather simple */
for (ii = 0; ii < 2 * radius + 1; ii++)
g free (row[ii]);

g free (row);
g free (outrow);

/* Update the modified region */
gimp_drawable flush (drawable);
gimp drawable merge shadow (drawable->drawable id, TRUE);
gimp drawable update (drawable->drawable id,
x1, vyl,
width, height);
}

static void
init mem (guchar ***row,
guchar **outrow,

gint num_bytes)
{
gint 1i;
/* Allocate enough memory for row and outrow */
*row = g new (char *, (2 * radius + 1));
for (i = -radius; i <= radius; i++)
(*row) [1 + radius] = g new (guchar, num bytes);
*outrow = g new (guchar, num bytes);
}

static void
process row (guchar **row,
guchar *outrow,

gint x1,

gint yl,

gint width,
gint height,
gint channels,
gint i)

{
gint j;

for (j = 0; j < width; j++)
{
gint k, ii, jj;
gint left = (j - radius),
right = (j + radius);

/* For each layer, compute the average of the
* (2r+1)x(2r+l1) pixels */

for (k = 0; k < channels; k++)
{

gint sum = 0;

for (ii = 0; ii < 2 * radius + 1; ii++)
for (jj = left; jj <= right; jj++)
sum += row[ii][channels * CLAMP (jj, 0, width - 1) + k];

outrow[channels * j + k] =
sum / (4 * radius * radius + 4 * radius + 1);

}

static void
shuffle (GimpPixelRgn *rgn in,

guchar **row,
gint x1,
gint yl,
gint width,
gint height,
gint ypos)
{
gint i;
guchar *tmp row;
/* Get tile row (i + radius + 1) into row[0] */
gimp pixel rgn get row (rgn_in,
row[0],
x1, MIN (ypos + radius + yl, yl + height - 1),
width);
/* Permute row[i] with row[i-1] and row[0] with row[2r] */
tmp row = row[0];
for (i1 =1; i <2 * radius + 1; i++)
row[i - 1] = row[i];
row[2 * radius] = tmp row;
}

Adding a graphical interface and saving parameters

To let the user modify the radius, or let a non-interactive script give it as a parameter, we now need
to get back to our run() function and settle some simple things.

First we create a structure to allow saving and returning options. Usually one does this even for
plug-ins with only one parameter.

typedef struct

{
gint radius;
} MyBlurVals;

/* Set up default values for options */
static MyBlurVals bvals =

3 /* radius */

i

Next, we modify the run() function so that execution modes are taken into account. In interactive
mode and repeat last filter mode, we try to get the last values used by the gimp_get_data() function,
which takes a unique data identifier as its first input parameter. Usually, one uses the procedure's
name.

Finally, in interactive mode, we add a few lines that will build the graphical interface allowing

options modification.

static void

run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn _vals,
GimpParam **return _vals)
{

static GimpParam values[1];
GimpPDBStatusType status = GIMP _PDB SUCCESS;
GimpRunMode run_mode;
GimpDrawable *drawable;

/* Setting mandatory output values */
*nreturn vals = 1;
*return vals = values;

values[0].type = GIMP PDB STATUS;
values[0].data.d status = status;

/* Getting run mode - we won't display a dialog if
* we are in NONINTERACTIVE mode */
run_mode = param[0].data.d int32;

/* Get the specified drawable */
drawable = gimp drawable get (param[2].data.d drawable);

switch (run_mode)
{
case GIMP_RUN INTERACTIVE:
/* Get options last values if needed */
gimp get data ("plug-in-myblur", &bvals);

/* Display the dialog */

if (! blur dialog (drawable))
return;

break;

case GIMP RUN NONINTERACTIVE:
if (nparams != 4)
status = GIMP_PDB CALLING ERROR;
if (status == GIMP PDB SUCCESS)
bvals.radius = param[3].data.d int32;
break;

case GIMP_RUN WITH LAST VALS:
/* Get options last values if needed */
gimp get data ("plug-in-myblur", &bvals);
break;

default:
break;

}
blur (drawable);

gimp displays flush ();
gimp drawable detach (drawable);

/* Finally, set options in the core */

if (run_mode == GIMP RUN INTERACTIVE)
gimp set data ("plug-in-myblur", &bvals, sizeof (MyBlurVals));

return;

}

The graphical interface

I won't detail GTK+ programming as this is done very well in other places. Our first try will be very
simple. We will use the utility widget of GIMP, the GimpDialog, to create a window with a header,
a numeric control of type GtkSpinButton (associated with a GtkAdjustment) and its label, nicely
framed in a GtkFrame.

In the following parts, in order to show how easy one can do such things, I will add a preview in the
dialog to show real time effects of the parameters.

Our final dialog will look like this (tree generated with Glade):

In The GIMP 2.2, there is a number of widgets that come bundled with parameters that allow a
coherent behaviour, consistent with GNOME Human Interface Guidelines. GimpPreview also
appeared in 2.2. Let's make a first try without it:

My blur
Modify radius-
Radius: |3 z

static gboolean

blur dialog (GimpDrawable *drawable)

{
GtkWidget *dialog;
GtkWidget *main_vbox;
GtkWidget *main hbox;
GtkWidget *frame;
GtkWidget *radius label;
GtkWidget *alignment;
GtkWidget *spinbutton;
GtkObject *spinbutton adj;
GtkWidget *frame label;

http://developer.gimp.org/writing-a-plug-in/3/glade-tree.png

gboolean run;
gimp ui init ("myblur", FALSE);
dialog = gimp dialog new ("My blur", "myblur",
NULL, O,
gimp standard help func, "plug-in-myblur",

GTK STOCK CANCEL, GTK RESPONSE CANCEL,
GTK _STOCK OK, GTK_RESPONSE_OK,

NULL) ;

main_vbox = gtk vbox new (FALSE, 6);
gtk container add (GTK CONTAINER (GTK DIALOG (dialog)->vbox),

main_vbox);

gtk widget show (main_vbox);

frame = gtk frame new (NULL);

gtk widget show (frame);

gtk box pack start (GTK BOX (main_vbox), frame, TRUE, TRUE, 0);
gtk container set border width (GTK CONTAINER (frame), 6);

alignment = gtk alignment new (0.5, 0.5, 1, 1);

gtk widget show (alignment);

gtk container add (GTK CONTAINER (frame), alignment);

gtk alignment set padding (GTK ALIGNMENT (alignment), 6, 6, 6, 6);

main_hbox = gtk hbox new (FALSE, 0);
gtk widget show (main_hbox);
gtk container add (GTK CONTAINER (alignment), main_hbox);

radius label = gtk label new with mnemonic (" Radius:");

gtk widget show (radius label);

gtk box pack start (GTK BOX (main hbox), radius label, FALSE, FALSE, 6);
gtk label set justify (GTK LABEL (radius label), GTK JUSTIFY RIGHT);

spinbutton adj = gtk adjustment new (3, 1, 16, 1, 5, 5);
spinbutton = gtk spin button new (GTK ADJUSTMENT (spinbutton adj), 1,

gtk widget show (spinbutton);
gtk box pack start (GTK BOX (main hbox), spinbutton, FALSE, FALSE, 6);
gtk spin button set numeric (GTK SPIN BUTTON (spinbutton), TRUE);

frame label = gtk label new ("Modify radius");

gtk widget show (frame label);

gtk frame set label widget (GTK FRAME (frame), frame label);
gtk label set use markup (GTK LABEL (frame label), TRUE);

g signal connect (spinbutton adj, "value changed",
G_CALLBACK (gimp_int adjustment update),
&bvals.radius);
gtk widget show (dialog);
run = (gimp dialog run (GIMP DIALOG (dialog)) == GTK RESPONSE OK);
gtk widget destroy (dialog);

return run;

Adding a GimpPreview

Adding a GimpPreview is quite easy. First we create a GtkWidget with
gimp_drawable_preview_new(), then we attach an invalidated signal to it, which will call the blur
function to update the preview. We also add a second parameter to MyBlurVals to remember the
activation state of the preview.

A method to update easily the preview is to add a preview parameter in the blur function, and if
preview is not NULL, to take GimpPreview limits. So when we call blur from run(), we set the
preview parameter to NULL.

To take GimpPreview limits, we use gimp_preview_get_position() and gimp_preview_get_size(), so
we can generate only what will be displayed.

To achieve this the right way we'll tune some of the code - we don't need to update the progress bar
while generating the preview, and we should tell at GimpPixelRgn init time that the tiles should not
be sent back to the core.

Finally, we display the updated preview with the gimp_drawable_preview_draw_region() function.
We get a dialog box that shows us in real time the plug-in effects. Moreover, thanks to the GIMP
core, our plug-in already takes selections into account.

- " 4
G

= v 100% v Dackground (LTS HDD

Here are the two functions in their last version:

static void
blur (GimpDrawable *drawable,
GimpPreview *preview)

{
gint i, ii, channels;
gint x1, yl, x2, y2;
GimpPixelRgn rgn in, rgn out;
guchar **row;
guchar *outrow;
gint width, height;

if (!preview)

http://developer.gimp.org/writing-a-plug-in/3/blur_dialog2.png
http://developer.gimp.org/writing-a-plug-in/3/blur_select.png

gimp progress init ("My Blur...");

/* Gets upper left and lower right coordinates,

* and layers number in the image */

if (preview)

{
gimp preview get position (preview, &x1, &yl);
gimp preview get size (preview, &width, &height);

x2 = X1 + width;
y2 = yl + height;
}
else
{
gimp drawable mask bounds (drawable->drawable id,
&x1, &yl,
&2, &y2);

width = x2 - x1;
height = y2 - y1;
}

channels = gimp drawable bpp (drawable->drawable id);

/* Allocate a big enough tile cache */
gimp tile cache ntiles (2 * (drawable->width /
gimp_tile width () + 1));

/* Initialises two PixelRgns, one to read original data,
* and the other to write output data. That second one will
* be merged at the end by the call to
* gimp drawable merge shadow() */

gimp pixel rgn init (&rgn_in,

drawable,
x1, vyl,
width, height,
FALSE, FALSE);
gimp pixel rgn init (&rgn_out,
drawable,
x1, vyl,
width, height,
preview == NULL, TRUE);

/* Allocate memory for input and output tile rows */
init mem (&row, &outrow, width * channels);

for (ii = -bvals.radius; ii <= bvals.radius; ii++)
{
gimp pixel rgn get row (&rgn in,
row[bvals.radius + iil,
x1l, yl + CLAMP (ii, 0, height - 1),
width);
}

for (i = 0; i < height; i++)
{

/* To be done for each tile row */

process row (row,
outrow,
x1, yl,
width, height,
channels,
i);

gimp pixel rgn set row (&rgn out,

outrow,
x1l, i + yl,
width);
/* shift tile rows to insert the new one at the end */
shuffle (&rgn in,
row,
x1, vyl,
width, height,
i);
if (i % 10 == 0 && !preview)
gimp progress update ((gdouble) i / (gdouble) height);
}

for (ii = 0; ii < 2 * bvals.radius + 1; ii++)
g free (row[ii]);

g free (row);
g free (outrow);

/* Update the modified region */
if (preview)

{
gimp_drawable preview draw region (GIMP_DRAWABLE PREVIEW (preview),
&rgn_out);
}
else
{

gimp drawable flush (drawable);
gimp drawable merge shadow (drawable->drawable id, TRUE);
gimp drawable update (drawable->drawable id,

x1, vyl,

width, height);

}

static gboolean

blur dialog (GimpDrawable *drawable)

{
GtkWidget *dialog;
GtkWidget *main_vbox;
GtkWidget *main_hbox;
GtkWidget *preview;
GtkWidget *frame;
GtkWidget *radius label;
GtkWidget *alignment;
GtkWidget *spinbutton;
GtkObject *spinbutton adj;
GtkWidget *frame label;
gboolean run;

gimp ui init ("myblur", FALSE);
dialog = gimp dialog new ("My blur", "myblur",
NULL, O,
gimp standard help func, "plug-in-myblur",

GTK _STOCK CANCEL, GTK RESPONSE CANCEL,
GTK _STOCK OK, GTK_RESPONSE_OK,

NULL) ;

main_vbox = gtk vbox new (FALSE, 6);

gtk container add (GTK CONTAINER (GTK DIALOG (dialog)->vbox),
main_ vbox);
gtk widget show (main_vbox);

preview = gimp drawable preview new (drawable, &bvals.preview);
gtk box pack start (GTK BOX (main_vbox), preview, TRUE, TRUE, 0);
gtk widget show (preview);

frame = gimp frame new ("Blur radius");
gtk box pack start (GTK BOX (main_vbox), frame, FALSE, FALSE, 0);
gtk widget show (frame);

alignment = gtk alignment new (0.5, 0.5, 1, 1);

gtk widget show (alignment);

gtk container add (GTK CONTAINER (frame), alignment);

gtk alignment set padding (GTK ALIGNMENT (alignment), 6, 6, 6, 6);

main hbox = gtk hbox new (FALSE, 12);

gtk container set border width (GTK CONTAINER (main_ hbox), 12);
gtk widget show (main hbox);

gtk container add (GTK CONTAINER (alignment), main_hbox);

radius_label = gtk label new with mnemonic (" Radius:");

gtk widget show (radius label);

gtk box pack start (GTK BOX (main_hbox), radius label, FALSE, FALSE, 6);
gtk label set justify (GTK LABEL (radius label), GTK JUSTIFY RIGHT);

spinbutton = gimp spin button new (&spinbutton adj, bvals.radius,

1, 32,1, 1, 1, 5, 0);
gtk box pack start (GTK BOX (main_hbox), spinbutton, FALSE, FALSE, 0);
gtk widget show (spinbutton);

g signal connect swapped (preview, "invalidated",
G_CALLBACK (blur),
drawable);
g signal connect swapped (spinbutton_adj, "value changed",
G CALLBACK (gimp preview invalidate),
preview);

blur (drawable, GIMP PREVIEW (preview));
g signal connect (spinbutton adj, "value changed",
G CALLBACK (gimp int adjustment update),
&bvals.radius);
gtk widget show (dialog);
run = (gimp _dialog run (GIMP DIALOG (dialog)) == GTK RESPONSE OK);
gtk widget destroy (dialog);

return run;

Conclusion

In these articles, we saw basic concepts for several aspects of a GIMP plug-in. We messed with
image data treatment through a simple algorithm, and followed a path that showed us how to avoid
performance problems. Finally, we generalised the algorithm and added parameters to it, and we
used some GIMP widgets to make a nice user interface.

	Introduction
	Architecture
	Compiling the plug-in
	Behaviour
	Essentials
	MAIN ()
	The query() function
	Run-modes
	Introduction
	Image structure
	Updating the image
	Implementing blur()
	Row processing
	Introduction
	Tile management
	Algorithm generalisation
	Adding a graphical interface and saving parameters
	The graphical interface
	Adding a GimpPreview
	Conclusion

